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Abstract

Acoustic radiation from a point-driven, infinite fluid-loaded, laminated composite plate which is reinforced by doubly

periodic parallel stiffeners is investigated theoretically. The stiffeners interact with the plate only through normal forces.

Fourier transform is used for solving the responses of the plate, and the stationary phase approximate is then employed to

find an expression for the far field pressure. Acoustic radiation from a stiffened uniform plate composed of multiple

isotropic layers is calculated with the present stiffened, laminated composite plate theory, and with the stiffened uniform

isotropic plate theory that Mace has proposed. Comparison of the numerical results reveals the validity of our work.

Characteristics of the acoustic radiation from a stiffened laminated composite plate are examined through examples and

some physical interpretations of significant features are also offered.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite plates are extensively used in many engineering applications due to their excellent
properties with lower weight and higher strength and stiffness than most metallic materials, which are often
reinforced by stiffening members such as frames or ribs. So the problem of the acoustic radiation from
stiffened laminated composite plates is of great concern in many related fields. For laminated plates, they are
usually modeled as a two-dimensional problem, i.e., an equivalent single layer, so the fully developed uniform
isotropic plate theories [1,2] can be conveniently extended to the laminated plate theories [3,4], which are based
either on the Kichhoff hypothesis or on the shear deformation assumptions. Among them, the classical
laminated plate theory (CLPT) is based on the Kirchhoff–Love kinematic hypothesis which states that straight
lines normal to the undeformed midplane remain straight and normal to the midplane after deformation (i.e.,
the transverse shear strain are neglected). However, it is inadequate because it underestimates the deflections
and overestimates resonant frequencies and buckling loads, so it has to be restricted to the case of thin plate.

More accurate results are provided by first-order shear deformation theory [5,6] (FSDT) or other higher-
order shear deformation theories [7,8] (HSDT). First-order shear deformation theory is based on
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Reissner–Mindlin-type assumptions which take into account the transverse shear deformation, however, it
requires shear correction factors to compensate for the errors resulting from the approximation of the nonlinear
shear-strain distribution by the linear distribution. More refined theories such as second and higher-order plate
theories, which use higher-order polynomials in the expansions of the displacement components through the
thickness of the plate, are proposed by Reddy and his associates [7–9] for laminated plates and shells.

When plates are reinforced by stiffening members, their dynamic characteristics are quite different from
those of the uniform plates. The dynamic analysis of the stiffened plates has been extensively conducted by
numerous researchers. The effects of the stiffening members play an important role in the vibration and
acoustic radiation from a stiffened plate. Maidanik [10] showed that the rigid periodic line supports attached
to an infinite plate increase the acoustic radiation efficiency at frequencies below the critical frequency.
Maidanik [11] and Crighton and Maidanik [12] concluded a physical interpretation on the effects of the
stiffeners that the stiffening members may convert high, nonradiating, subsonic wavenumbers into low,
radiating, supersonic wavenumbers.

Two main categories for the theories of plates reinforced with periodic stiffeners, one of which is Mace’s
wavenumber transform method [13], the other is Mead’s space harmonic wave theory [14,15], and the former
was also considered as an implicit form of the latter in mathematical formulation. Mace investigated the
acoustic radiation from an infinite uniform plate with parallel or orthogonal periodic stiffeners which can
convert free waves at a certain wavenumber into infinite free waves with periodic wavenumber components.
This was confirmed by Burroughs [16] in the case of a cylindrical shell with doubly periodic rings. Space
harmonic series was employed by Rumerman [17] for the wave propagation and vibration of a ribbed thin
plate, in which the forces and moments due to the stiffeners are described in forms of line transfer impedances.
Finite plates reinforced by stiffeners were also the interests of the investigators. Keltie [18] gave the acoustic
response of a finite fluid-loaded thin plate with arbitrary attached stiffeners, in which the ribs were modeled as
simple inertial reactions providing transverse forces to the plate, and the vibration of the plates is taken as the
expansion of the in vacuo modes.

Little attention [15,19,20] was paid to the vibration and acoustic radiation from a laminated, or even
composite plate with periodic stiffeners. In the present paper, the vibration and acoustic radiation from a
laminated plate reinforced by doubly periodic parallel stiffeners is investigated by using Mace’s method for an
infinite uniform isotropic plate. The problem is based on the classical laminated composite plate theory, the
Helmholtz wave equation, and boundary conditions at the fluid-plate interface and at infinity. The solution is
obtained by using Fourier transform, and the stationary phase approximation is used to find an expression for
the far field acoustic pressure. Far field radiation from an isotropic plate with doubly periodic stiffeners is
calculated with classical laminated composite plate theory and with thin isotropic plate theory proposed by
Mace, respectively. Comparison of the numerical results reveals the validity of our work. Further numerical
results are represented for discussion of the characteristics of vibration and acoustic response for stiffened
laminated plates.

2. Description of mathematical model

An infinite, laminated composite plate rests on the plane z ¼ 0 with acoustic fluid occupying the half-space
z40 as shown in Fig. 1. Two sets of parallel frames are attached to the lower plane of the plate in x direction.
The first set of frames are the smaller frames with a spacing l and the second set of the frames, namely,
bulkheads, are the larger frames that replace every qth frame in the smaller set. Thus, the spacing of the second
set of frames is ql. The origin of the plate’s coordinates may be selected at one point in the plate’s midplane,
and which is also with a distance of x0 to one arbitrary bulkhead in x direction. Thus, the terms in the
expressions of the forces due to the frames and the bulkheads shall be defined as dðx� x0 � nlÞ and
dðx� x0 � nqlÞ, respectively. As an algebraic convenience, x0 will be set zero. Since the thickness of the plate is
sufficiently thin with comparison to its other two dimensions, the interfaces between the plate and the fluid, as
well as the intersections between the plate and the frames, are chosen from the plane z ¼ 0. The plate is driven
by an external transverse force pe which is located at (x0,y0) and with an amplitude of Q. For problems of
harmonic vibration, all of the loadings have a time dependence eiot, where o is the circular frequency and eiot

will henceforth be suppressed throughout.
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Fig. 1. An infinite laminated composite plate with doubly periodic parallel stiffeners.
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The classical Kirchhoff–Love thin plate theory is conveniently extended to laminated plates by applying the
appropriate integration through lamina, and stress–strain relations based on the following complementary
assumptions:
(1)
 The layers are perfectly bonded together.

(2)
 The material of each layer is linearly elastic.

(3)
 The material has two planes of material symmetry (orthotropic).
With the above assumptions, the motions of a fluid-loaded, laminated composite plate with doubly periodic
parallel stiffeners are expressed in the following matrix form [21]:

L11 L12 L13

L21 L22 L23

L31 L32 L33

2
64

3
75

u0

v0

w

8><
>:

9>=
>; ¼

0

0

pe � pa x; y; 0ð Þ � pf x; yð Þ � pb x; yð Þ

h i
8>><
>>:

9>>=
>>;, (1)

where u0,v0 are the membrane displacements in the plate’s middle plane, w is the transverse displacement of the
plate. pa(x,y,z), pe ¼ Qd(x�x0)d(y�y0) are the acoustic pressure in the fluid and the point driven force on
(x0,y0), respectively. pf(x,y), pb(x,y) are the reactive forces due to the two sets of stiffeners. Lij (i ¼ 1,3; j ¼ 1,3)
are differential operators for a thin laminated composite plate, which will be given in Appendix A.

Eq. (1) can be easily solved by Fourier transformation with the following transform pair:

~wða;bÞ ¼
Z þ1
�1

Z þ1
�1

wðx; yÞeiðaxþbyÞ dxdy, (2)

wðx; yÞ ¼
1

4p2

Z þ1
�1

Z þ1
�1

~wða;bÞe�iðaxþbyÞd adb: (3)

Transforming Eq. (1), gives

~L11
~L12

~L13

~L21
~L22

~L23

~L31
~L32

~L33

2
64

3
75

~u0

~v0

~w

8><
>:

9>=
>; ¼

0

0

~pe � ~pa � ~pf � ~pb

h i
8>><
>>:

9>>=
>>;, (4)

where ~Lij (i ¼ 1,3; j ¼ 1,3) are the transformed operators for a thin laminated composite plate, which will be
given in Appendix B. Before the solving of Eq. (4), it is found that the terms ~pa, ~pb and ~pf in the right-hand side
of Eq. (4) are functions of transformed transverse displacement ~w, so they shall be transposed to the left-hand
side and appended to their counterpart, i.e., the term ~L33 ~w. However, due to the presence of periodic frames,
~pb and ~pf involve transformed transverse displacement with infinite, converted wavenumber components in
terms of ~wða� 2np=l; bÞ, which makes the above idea come true with great difficulties. In the present paper,
Eq. (4 ) is solved in the classical concept of stiffness as did by Mace and Burroughs. When all the loadings are
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beforehand assumed to be independent of the plate’s displacements, the transformed transverse displacement
~wða;bÞ in the wavenumber space is given as follows by solving Eq. (4):

~wða;bÞ ¼ ½ ~pe � ~pa � ~pf � ~pb� det
~L11

~L12

~L21
~L22

" # !,
detð ~LÞ. (5)

Eq. (5 ) can be rewritten in the following form

~Ksða;bÞ ~wða; bÞ ¼ ~pe � ~pa � ~pf � ~pb, (6)

where ~Ks is the transformed spectral stiffness and can be given as follows:

~Ksða; bÞ ¼ det
~L11

~L12

~L21
~L22

" # !,
detð ~LÞ

 !�1
. (7)

When we examine the elements ~Lij in Eq. (7) through the laminated composite plate theory (a more brief
outline is given in Appendix A and B), the transverse motion of a laminated composite plate includes the
contribution of the in-plane motions due to not only the Poisson effect, but also the particular feature of the
laminated plate, i.e., bending–extension coupling, which make the characteristics of the vibration and acoustic
radiation from a laminated composite plate more complex than those from a uniform isotropic plate.

For sake of the integrity of this paper, the work done by Mace [13] as well as Burroughs [16] will be
frequently cited and henceforth will not be labeled as citations.

2.1. The fluidloading

The acoustic pressure in the half-infinite space above z40 satisfies the Helmholtz equation

q2

qx2
þ

q2

qy2
þ

q2

qz2

� �
pa þ

o2

c20

� �
pa ¼ 0, (8)

where c0 is the speed of sound in the fluid. The coupling between the plate and the fluid satisfies the
momentum equation in z-axis as

qpa

qz
jz¼0 ¼ o2r0w, (9)

where r0 is the density of the fluid . Taking the Fourier transform of Eqs. (8) and (9), yields

~paða;b; 0Þ ¼ �o
2r0 ~wða;bÞ=gða;bÞ, (10)

where

g2 ¼ a2 þ b2 � o2=c20 (11)

and g is to be evaluated such that: Re(g)X0, Im(g)X0 if Re(g) ¼ 0, in order that the radiation conditions for
outgoing waves are met.

2.2. Reactive froces by stiffeners

The equation of motion of the nth frame, which is modeled as a Bernoulli–Euler beam excited by a line force
Fn(y) along the line x ¼ nl is

Ef I f

d4un

dy4
� rf Af o2un ¼ Fn, (12)

where EfIf and rfAf are the bending stiffness and mass per unit length of the frame and un(y) is the frame
displacement. The sum of the forces acting on the plate due to the frames is therefore

pf ðx; yÞ ¼
Xn¼þ1

n¼�1

Ef If

d4un

dy4
� rf Af o2un

� �
dðx� nlÞ: (13)
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The transform of these reactive forces is

~pf a;bð Þ ¼ Ef If b
4
� rf Af o2

� � Xþ1
n¼�1

~un bð Þeianl . (14)

Since the transverse displacements of the frame and the plate are equal at x ¼ nl, we have

unðyÞ ¼ wðnl; yÞ; ~unðbÞ ¼ wðnl;bÞ. (15)

By definition

wðnl; bÞ ¼
1

2p

Z 1
�1

~wðan;bÞe�iða
nnlÞ dan (16)

and therefore

X1
n¼�1

~unðbÞeianl ¼
1

2p

X1
n¼�1

Z 1
�1

~wðan;bÞeiða�a
nÞnl dan. (17)

The Poisson sum formula can be used to show that

X1
n¼�1

eianl ¼ 2p
X1

n¼�1

dðal � 2npÞ (18)

and thus

X1
n¼�1

~unðbÞeianl ¼
X1

n¼�1

Z 1
�1

~wðan;bÞdðða� anÞl � 2npÞdan ¼
1

l

X1
n¼�1

~w a�
2np

l
;b

� �
. (19)

The transform of the frame reactions is finally given by

~pf a;bð Þ ¼
Kf

l

� � Xn¼þ1
n¼�1

~wða� 2np=l;bÞ, (20)

where

Kf ¼ Ef If b
4
� rf Af o2. (21)

A similar expression can be found for the reactive forces due to the bulkheads, which lie along the lines
x ¼ nql. However, in the derivation above a frame was assumed to lie at x ¼ nl for all integers n. The stiffness
of a frame must therefore be subtracted from the stiffness of each bulkhead. Thus

~pbða;bÞ ¼
ðKb � Kf Þ

ql

� � Xn¼þ1
n¼�1

~wða� 2np=l; bÞ, (22)

where

Kb ¼ EbIbb
4
� rbAbo2. (23)

3. Solutions of transformed equations

Substituting Eqs. (10), (20) and (22) into Eq. (6) yields Mace’s solution which is written as follows:

~wða;bÞ ¼
~pe

Sða; bÞ
�
ðKb � Kf Þ

Sða;bÞql

X1
n¼�1

~w a�
2np
ql

;b
� �

�
Kf

Sða;bÞl

X1
n¼�1

~w a�
2np

l
;b

� �
, (24)

where

Sða;bÞ ¼ ~Zsða;bÞ � r0o2=g, (25)
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is the spectral dynamic stiffness of the fluid-loaded, laminated composite plate. Mace has given the solution to
Eq. (24) as

~wðaÞ ¼ F ðaÞ � GP0ðaÞ þ
H
Pq�1

r¼0PrðaÞ=1þ GY rðaÞ

1þH
Pq�1

r¼0Y rðaÞ=1þ GY rðaÞ
n o

8<
:

9=
;
,
fSðaÞ � ð1þ GY 0ðaÞÞg (26)

with the following definitions

F ðaÞ ¼ ~pe=S; G ¼ Kf =l; H ¼ ðKb � Kf Þ=ql; e ¼ 2p=l (27)

PrðaÞ ¼
X1

m¼�1

F a�
er

q
� em

� �
; Y rðaÞ ¼

X1
m¼�1

1=S a�
er

q
� em

� �
: (28)

The far field acoustic radiation in spherical coordinates (R,y,f) can be given with the application of one
standard procedure, i.e., stationary phase approximation

PðR; y;fÞ ¼ �r0o
2 ~wða0;b0Þe

�ik0R=2pR, (29)

where the stationary point is defined as follows

a0 ¼ ðo=c0Þ sin y cos f;b0 ¼ ðo=c0Þ sin y sin f, (30)

and R is the distance from the field point to the origin. It is clear from Eq. (29) that the far field pressure
at an observation point (R,y,f) only involves contribution from transformed displacement at a single
wavenumber pair (a0,b0) which is specified by Eq. (30), and the contribution from all other wavenumbers
may be filtered out due to the rapidly oscillatory integral in the expression for the far field. By the way, it will
be noted that the origin of the spherical coordinates shall be coincident with the origin of the plate’s
coordinates, besides, the y and f axes shall be orientated along x and z axes for the plate’s coordinates,
respectively.

4. Numerical results

In this section, numerical results based on Eq. (29) are calculated for the far field (R ¼ 50.0m, y ¼ f ¼ 451)
acoustic radiation from a point driven, laminated composite plate reinforced with doubly periodic parallel
stiffeners. For all the numerical examples, the external force is located at (1.0m, 0.0m) and with an amplitude
of 1.0N. The sound pressure levels in Figs. (2)–(8) are normalized with reference to 1 mPa pressure, and
corrected to the field point (R0 ¼ 1.0m, y0 ¼ f0 ¼ 451). This is because the sound pressure in the near field is
unsteady, the aforementioned procedure is standard, and extensively used to describe the acoustic field from
an underwater elastic structure.

At first, to validate our work, a doubly stiffened uniform isotropic plate, whose parameters are given in S.I.
units as shown in Table 1, is considered to be a laminated plate with three uniform isotropic layers. Therefore,
numerical results for the acoustic radiation from a stiffened uniform isotropic plate are represented with three
plate theories: classical thin plate theory that was used by Mace, Timoshenko-Mindlin thick plate theory and
classical laminated composite plate theory.

Numerical results are shown in Fig. 2 for a plate without bulkheads and in Fig. 3 for a plate with bulkheads.
From Figs. 2 and 3, the results from the laminated composite plate theory agree well with those from thin
plate theory used by Mace except at high frequency range, therefore, our theory for acoustic radiation from a
laminated composite plate reinforced with doubly periodic parallel stiffeners is partly verified. Moreover, with
comparison to the Timoshenko-Mindlin thick plate theory, the classical thin plate theory shall provide good
accuracy for dynamics of a plate in low and medium frequency ranges, which means that the effects of
rotatory inertia and transverse shear may come into effect only at very high frequencies, i.e. when the plate
thickness exceeds ls/20 as concluded by Junger and Feit [22], where ls is the wavelengths of free shear waves in
the plate.

Numerical results for a laminated plate with and without the bulkheads are shown in Fig. 4. When
the laminated plate is only reinforced by the first set of more closely spaced stiffeners, the first peak in the
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Fig. 2. Comparison between three plate theories (without bulkheads).

Fig. 3. Comparison between three plate theories (with bulkheads).

X.W. Yin et al. / Journal of Sound and Vibration 306 (2007) 877–889 883
sound pressure level occurs near 2300Hz. And when the second set of more widely spaced stiffeners
(bulkheads) are added, a series of additional peaks occur at lower frequencies below 2300Hz, as well
as at higher frequency ranges. This phenomena was first observed by Mace for a stiffened uniform
isotropic plate, and then by Burroughs for a ring-reinforced cylindrical shell, where the wavenumber
conversion mechanism due to the presence of periodic stiffening members was discovered, however, they
both ignored that the wavenumber conversion, which is due to the second set of more widely spaced
stiffeners, can also make contribution to the additional acoustic radiation peaks at higher frequency
ranges. With inspection of Eqs. (20) and (22), the presence of periodic stiffeners possess a bidirectional
wavenumber conversion mechanism, namely, it can convert not only high wavenumber components into low
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Fig. 4. Effects of bulkheads on far field sound pressure level.

Fig. 5. Effects of bulkhead spacing on far field sound pressure level.
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wavenumber components (when n40), but also low wavenumber components into high wavenumber
components (when no0).

The effect of bulkhead spacing on acoustic radiation is represented in Fig. 5. If the bulkhead spacing ql is
close to the frame spacing l, for example, when q ¼ 2, very deep anti-resonant valleys are observed and
they play an absolutely dominant role in the acoustic radiation at the anti-resonant frequencies, which
display a distinctively different feature from that with larger bulkhead spacing, i.e., q ¼ 9, q ¼ 20. A
sufficiently reasonable interpretation can not be offered in the present paper and further investigations are
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Fig. 6. Effects of the middle layer’s stiffness on far field sound pressure level.

Fig. 7. Effects of plate damping loss factor on far field sound pressure level.
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therefore necessary for better understanding this feature. Nevertheless, we are reminded that proper design of
bulkhead spacing may effectively control the acoustic radiation from a structure with doubly periodic
stiffeners.

In engineering applications, laminated composite plates are usually constituted with many plies, each of
whose material property axes may be oriented along different directions. Constrained layer damping (CLD) is
one of the special cases, in which the middle layer is frequently assumed to undergo only pure shear [15].
The effects of the middle layer stiffness on acoustic radiation were seldom considered. In this section,
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Fig. 8. Comparison between sound pressure levels for a stiffened symmetrical laminate and a stiffened antisymmetrical laminate.

Table 2

Main parameters of the stiffened, three-layered sandwich plate

Ex and Ey of the

middle layer

Ex and Ey of the lower

and upper layers

Density of each

layer

Thickness Stiffened only by

Case 1 2.0� 105 2.0� 1011 7800 0.003� 3 The first set of

frames in Table 1.

Case 2 2.0� 108 2.0� 1011 7800 0.003� 3

Case 3 2.0� 1011 2.0� 1011 7800 0.003� 3

Table 1

Parameters of the fluid-loaded, laminated composite plate

Density of plate r 7800 Density of frames rf 7800

Young’s modulus E 2.0� 1011 Inertia moment If 6.66� 10�7

Poisson’s ratio n 0.3 Section area Af 2.58� 10�4

Loss factor Z 0.02 Density of bulkheads rb 7800

Fluid density r0 1000 Inertia moment Ib 1.6� 10�4

Sound speed c0 1450 Section area Ab 4.0� 10�4

Plate thickness h 0.003� 3 Spacing q ¼ 9 l ¼ 0.1524

X.W. Yin et al. / Journal of Sound and Vibration 306 (2007) 877–889886
a three-layered sandwich plate with different Young’s modulus of middle layer is investigated to evaluate such
effects. The main parameters of the stiffened, laminated plate are listed in Table 2, and the other parameters
are the same as those in Table 1.

In Fig. 6, the effect of the middle layer’s stiffness on acoustic radiation is represented in three cases.
Reduction of Young’s modulus of the middle layer produces one additional resonant peak as shown
through the curves corresponding to cases 1 and 2. This is because the middle layer in case 1, as well in
case 2, is very soft with comparison to that in case 3, each of their surface layers may vibrate effectively
at a visible lower resonant frequency, and thus its vibration makes contribution to the acoustic field.
In plate theories, material layer close to the midplane is not effective for providing bending stiffness, so this
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Table 3

Parameters of the stiffened symmetrical/antisymmetical laminate

Layer

no.

Ex Ey vxy vyx Damping Density Layer

thickness

Ply angle

(deg.)

Stiffened only by

1 3.0� 1010 3.0� 1011 0.03 0.3 0.02 7800 0.0015 75 The first set of

frames in Table 1.

2 2.0� 1010 2.0� 1011 0.03 0.3 0.02 7800 0.0015 60

3 1.0� 1010 1.0� 1011 0.03 0.3 0.02 7800 0.0015 45

4 1.0� 1010 1.0� 1011 0.03 0.3 0.02 7800 0.0015 745

5 2.0� 1010 2.0� 1011 0.03 0.3 0.02 7800 0.0015 760

6 3.0� 1010 3.0� 1011 0.03 0.3 0.02 7800 0.0015 775

X.W. Yin et al. / Journal of Sound and Vibration 306 (2007) 877–889 887
contribution is very limited, and the acoustic radiation is not sensitive to the change of stiffness in the
middle layer.

The effect of structural damping on the acoustic radiation is illustrated in Fig. 7. According to the time
dependence eiot, the complex modulus of elasticity may take the form of E(1+iZ), where Z is the damping loss
factor. Adding damping reduces both the peaks and valleys in the numerical results shown in Fig. 7, but has
little impact at frequencies where peaks or valleys do not occur.

One of the most remarkable features of a laminated composite plate is that the plate is a combination of
many composite layers with different lamination schemes. For example, when ply stacking sequence, material,
and geometry are symmetrical with the midplane of the laminate, the laminate is called a symmetrical
laminate. Similarly is defined the antisymmetrical laminate. For symmetrical laminates, the coupling between
bending and extension will be eliminated, i.e., the coupling stiffenesses Bij (see Appendix A and B) are zero,
while for antisymmetrical laminates, the coupling stiffenesses Bij are not zero. The effects of these features on
acoustic radiation from a stiffened, laminated composite plate are of great significance.

In this section, as listed in Table 3, a symmetrical laminate (all ply angles are positive) and an
antisymmetrical laminate (ply angles for layers 1–3 are positive, for layers 4–6 are negative) are considered as
examples for evaluating the coupling effects on far field acoustic radiation. Numerical results for the acoustic
radiation are presented in Fig. 8 for the stiffened symmetrical laminate and the stiffened antisymmetrical
laminate, and there is almost no difference between them. Since the applied force is not in-plane but
transverse, the bending motions in the symmetrical and the antisymmetrical laminates are so dominant that
the coupling stiffenesses Bij due to different angle-ply schemes in the above two cases play a relatively minor
role in the acoustic radiation.

5. Conclusions

An equation is derived for acoustic radiation from a point-driven, fluid-loaded, laminated composite plate
reinforced by doubly periodic stiffeners, which is an extension of mace’s work for an isotropic plate with
doubly periodic stiffeners. Our work is verified through an example of a stiffened uniform isotropic plate,
the acoustic radiation from which is calculated with application of the present method and Mace’s
method, respectively.

Through numerical results, it is shown that the wavenumber conversion mechanism due to the presence of
stiffeners is a bidirectional one, which is an improved version of Mace and Burroughs’ discovery. A series of
very deep anti-resonant valleys for sound pressure level are observed when the spacing of the bulkheads is
close to that of the first set of stiffeners, and they play an absolutely dominant role in the acoustic radiation at
the anti-resonant frequencies, which display a distinctively different feature from that with larger bulkhead
spacing.

Structural damping can only reduce the valleys and peaks in acoustic radiation, while the middle layer
stiffness has little impact on the acoustic radiation. When the external point force is transverse, the lamination
schemes of symmetrical and antisymmetrical laminate play a minor role in the acoustic radiation.
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Appendix A

The differential operators Lij in Eq. (1) are symmetric and listed in the following

L11 ¼ A11
q2

qx2
þ 2A16

q2

qxqy
þ A66

q2

qy2
þmo2, (A.1)

L12 ¼ A16
q2

qx2
þ ðA12 þ A66Þ

q2

qxqy
þ A26

q2

qy2
, (A.2)

L22 ¼ A66
q2

qx2
þ 2A26

q2

qxqy
þ A22

q2

qy2
þmo2, (A.3)

L33 ¼ D11
q4

qx4
þ 4D16

q4

qx3qy
þ 2ðD12 þ 2D66Þ

q4

qx2qy2
þ 4D26

q4

qxqy3
þD22

q4

qy4
�mo2, (A.4)

L13 ¼ �B11
q3

qx3
� 3B16

q3

qx2qy
� ðB12 þ 2B66Þ

q3

qxqy2
� B26

q3

qy3
, (A.5)

L23 ¼ �B16
q3

qx3
� ðB12 þ 2B66Þ

q4

qx2qy2
� 3B26

q3

qxqy2
� B22

q3

qy3
, (A.6)

where Aij are called extensional stiffnesses, Dij the bending stiffnesses, Bij the bending-extensional coupling
stiffnesses, which are defined in terms of the lamina stiffnesses Q̄ij as [21]

Aij ¼
XN

k¼1

Q̄
ðkÞ

ij ðBkþ1 � BkÞ, (A.7)

Bij ¼
1

2

XN

k¼1

Q̄
ðkÞ

ij ðB
2
kþ1 � B2kÞ, (A.8)

Dij ¼
1

3

XN

k¼1

Q̄
ðkÞ

ij ðB
3
kþ1 � B3kÞ, (A.9)

where Q̄
ðkÞ

ij are known in terms of the engineering constants of the kth layer, namely, Young’s modulus, and

Poisson ratio, and Bk is the distance from the midplane to the surface of the kth layer having the furthest

z-coordinate. m is the mass per unit area of the plate and m ¼
PN

k¼1rkhk (N is the number of total layers of the

laminated plate).

Appendix B

The transformed operators ~Lij in Eq. (4) are symmetric and listed in the following

~L11 ¼ �A11a2 � 2A16ab� A66b
2
þmo2, (B.1)

~L12 ¼ �A16a2 � ðA12 þ A66Þab� A26b
2, (B.2)

~L22 ¼ �A66a2 � 2A26ab� A22b
2
þmo2, (B.3)

~L33 ¼ D11a4 þ 4D16a3bþ 2ðD12 þ 2D66Þa2b
2
þ 4D26ab

3
þD22b

4
�mo2, (B.4)
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~L13 ¼ �iB11a3 � 3iB16a2b� iðB12 þ 2B66Þab
2
� iB26b

3, (B.5)

~L23 ¼ �iB16a3 � ðB12 þ 2B66Þa2b
2
� 3iB26ab

2
� iB22b

3. (B.6)
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